Host Langerin (CD207) is a receptor for Yersinia pestis phagocytosis and promotes dissemination
نویسندگان
چکیده
Yersinia pestis is a Gram-negative bacterium that causes plague. After Y. pestis overcomes the skin barrier, it encounters antigen-presenting cells (APCs), such as Langerhans and dendritic cells. They transport the bacteria from the skin to the lymph nodes. However, the molecular mechanisms involved in bacterial transmission are unclear. Langerhans cells (LCs) express Langerin (CD207), a calcium-dependent (C-type) lectin. Furthermore, Y. pestis possesses exposed core oligosaccharides. In this study, we show that Y. pestis invades LCs and Langerin-expressing transfectants. However, when the bacterial core oligosaccharides are shielded or truncated, Y. pestis propensity to invade Langerhans and Langerin-expressing cells decreases. Moreover, the interaction of Y. pestis with Langerin-expressing transfectants is inhibited by purified Langerin, a DC-SIGN (DC-specific intercellular adhesion molecule 3 grabbing nonintegrin)-like molecule, an anti-CD207 antibody, purified core oligosaccharides and several oligosaccharides. Furthermore, covering core oligosaccharides reduces the mortality associated with murine infection by adversely affecting the transmission of Y. pestis to lymph nodes. These results demonstrate that direct interaction of core oligosaccharides with Langerin facilitates the invasion of LCs by Y. pestis. Therefore, Langerin-mediated binding of Y. pestis to APCs may promote its dissemination and infection.
منابع مشابه
Human dendritic cell-specific intercellular adhesion molecule-grabbing nonintegrin (CD209) is a receptor for Yersinia pestis that promotes phagocytosis by dendritic cells.
Yersinia pestis is the etiologic agent of bubonic and pneumonic plagues. It is speculated that Y. pestis hijacks antigen-presenting cells (APCs), such as dendritic cells (DCs) and alveolar macrophages, in order to be delivered to lymph nodes. However, how APCs initially capture the bacterium remains uncharacterized. It is well known that HIV-1 uses human DC-specific intercellular adhesion molec...
متن کاملYersinia pestis type III secretion system-dependent inhibition of human polymorphonuclear leukocyte function.
Human polymorphonuclear leukocytes (PMNs, or neutrophils) are the primary innate host defense against invading bacterial pathogens. Neutrophils are rapidly recruited to sites of infection and ingest microorganisms through a process known as phagocytosis. Following phagocytosis by human PMNs, microorganisms are killed by reactive oxygen species (ROS) and microbicidal products contained within gr...
متن کاملTransit through the Flea Vector Induces a Pretransmission Innate Immunity Resistance Phenotype in Yersinia pestis
Yersinia pestis, the agent of plague, is transmitted to mammals by infected fleas. Y. pestis exhibits a distinct life stage in the flea, where it grows in the form of a cohesive biofilm that promotes transmission. After transmission, the temperature shift to 37 degrees C induces many known virulence factors of Y. pestis that confer resistance to innate immunity. These factors are not produced i...
متن کاملYersinia type III secretion
Pathogenic Yersinia spp (Yersinia pestis, Yersinia pseudotuberculosis, and Yersinia enterocolitica) have evolved an exquisite method for delivering powerful effectors into cells of the host immune system where they inhibit signaling cascades and block the cells' response to infection. Understanding the molecular mechanisms of this system has provided insight into the processes of phagocytosis a...
متن کاملYersinia type III secretion: send in the effectors
Pathogenic Yersinia spp ( Yersinia pestis , Yersinia pseudotuberculosis , and Yersinia enterocolitica ) have evolved an exquisite method for delivering powerful effectors into cells of the host immune system where they inhibit signaling cascades and block the cells’ response to infection. Understanding the molecular mechanisms of this system has provided insight into the processes of phagocytos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 93 شماره
صفحات -
تاریخ انتشار 2015